In an article by Wired Magazine in 2012, an expanded outlook of the future of additive manufacturing indicated that there is research conducted by industrial engineers at Airbus towards 3D-printing by 2050 of a “self-cleaning aircraft with inbuilt neural networks, antioxidant enriched air and body heat harvesting facilities”. Currently, there are steps being made towards the assimilation of 3D-printing in aerospace, namely in recent instances like the launching by the European Space Agency (ESA) in 2013, of a program termed “Addictive Manufacturing Aiming towards Zero Waste and Efficient Production of High-Tech Metal Products”. The aim is to send in space by 2020 the first satellite printed as a single part, which is something that “would save 50 percent of the costs – [that equates to] millions of euros” (RT 2013).

When describing their research programme, ESA scientists also pointed out that “in the world of materials it’s the mixing of [...] different chemical elements that is vital [...]: we hardly use pure metals but we do use compounds, alloys and composites; the actual number of combinations and ratios of mixing elements is infinite” (ESA, 2014). Being “closer to alchemy than architectural tectonics [...] multi-materiality is the holy grail of materials scientists” (Wiscombe, 2012), while in architecture initial research in the field of multi-material design is only beginning to become evident, albeit in a dispersed manner.

The Visiting School will build upon the Future Matters symposium that was held at the AA in February 2015 and will be the first of its kind centred on a biennial exploration of a different multi-material, rather than being based on a fixed location. The scope will be to instigate a new alchemy for the 21st century, moving away from explorations of single, isotropic or composite materials and towards a completely new field of investigation dealing with material mixtures and grading. The aim will effectively be to explore contemporary practices of materially-graded, complex geometry design, moving away from mainstream explorations of single/isotropic materials and linear/planar tectonics. Within this new field of investigation, the Stuttgart VS will be researching into novel techniques of material mixtures and grading, associative design and double curvature surface generation.

For the second cycle of this exploration we will be based at the Institute for Lightweight Structures and Conceptual Design (ILEK) at the University of Stuttgart. Drawing from the Institute’s long history of experimentation and research on tensile structures instigated by Frei Otto in the 1960s and conducted at present by Werner Sobek, this year we will be focusing on the design and fabrication of materially graded membranes, as well as the application of UHPC and FGC on fabric formworks. The workflow followed will be divided into two stages:

1. Computing Membranes: Computational form finding methods will be taught by professional engineers and architects from ILEK and str.ucture GmbH. The aim will be to utilise the latest software technologies to form find membranes for textile structures, or fabric formworks for complex concrete structures. The results will be evaluated against criteria such as internal air pressure, as well as asymmetric and wind loading. The outcome of this research will inform the material grading procedures (i.e. changing the stiffness, thickness or porosity of the membranes themselves, or the consistency of the concrete poured into the formworks) that will follow in stage two.

2. Fabricated Grading: The digitally computed membranes or formworks will eventually be fabricated physically, utilising the workshop and robotic fabrication facilities at ILEK. The objective will be to rethink conventional research on tensile and concrete structures as isotropic constructs, by customising attributes such as materiality, reinforcement, rigidity, translucency, patterning, and porosity among others. The final, graded prototypes will be made up of mixtures of materials, all accurately engineered to respond to variable environmental, structural and aesthetic criteria, in essence forming multi-material structures that have finally caught up with the latest material developments.

Further Readings
  • Grigoriadis, K.: Mixed Matters: A Multi-Material Design Compendium, Jovis Verlag, 2016.
  • Grigoriadis, K.: Translating Digital to Physical Gradients, In: S. Chien, S. Choo, M. A. Schnabel, W. Nakapan, M. J. Kim and S. Roudavski, eds. 2016, Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016. Melbourne, Australia 30 March-2 April 2016. Hong Kong: The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA).
  • Grigoriadis, K.: From Opacity to Transparency. It is a (Mixed) Matter of Time/ De l’Opacité à la Transparence, Matière à Réflexion et Question de Temps, Archicréé, 373, 74-83, 192-193.
  • Grigoriadis, K.: Material Fusion: A Research into the Simulated Blending of Materials Using Particle Systems, International Journal of Architectural Computing, 13 (3), 335-352.
  • Grigoriadis, K.: Simulating Fusion: An Epistemological Analysis of a New Design Tool for an Imminent Multi-Material Future, In: M. Tamke, M. R. Thomsen, B. Faircloth, F. Scheurer and C. Gengnagel, eds. 2015, Modelling Behaviour: Design Modelling Symposium 2015. Copenhagen, Denmark 30 September-2 October 2015. Cham: Springer, pp. 283-294.
  • Grigoriadis, K.: Mixed Matters: The Problems of Designing with Functionally Graded Materials, In: M. Voyatzaki, ed. 2014. What’s the Matter? Materiality and Materialism at the Age of Computation. Barcelona, Spain 4-6 September 2014. Barcelona: European Network of Heads of Schools of Architecture, pp. 211-226.
  • Heinz, P.; Herrmann, M.; Sobek, W.: Herstellungsverfahren und Anwendungsbereiche für funktional gradierte Bauteile im Bauwesen, Abschlussbericht Forschungsinitiative Zukunft Bau (1/2011), Universität Stuttgart: ILEK, 2011.
  • Herrmann, M.; Haase, W.: Tragverhalten biege- und querkraftbeanspruchter Bauteile aus funktional gradiertem Beton, Beton- und Stahlbetonbau, 108 (2013), 6, 382–394.
  • Herrmann, M. et al.: Optimalstrukturen aus funktional gradiertem Beton - Entwurf, Berechnung und automatisierte Herstellung, Beiträge zur 1. DAfStb-Jahrestagung mit 54. Forschungskolloquium, Tagungsbeitrag, Ruhr-Universität Bochum: Deutscher Ausschuss für Stahlbeton, November 2013, 41–46.
  • Herrmann, M.; Sobek, W.: Entwicklung gewichtsoptimierter funktional gradierter Elementdecken, Abschlussbericht Forschungsinitiative Zukunft Bau (6/2014), Universität Stuttgart: ILEK, 2014.
  • Herrmann, M.: Gradientenbeton - Untersuchungen zur Gewichtsoptimierung einachsiger biege- und querkraftbeanspruchter Bauteile, Dissertation, Institut für Leichtbau Entwerfen und Konstruieren: Universität Stuttgart, 2015.
  • Herrmann, M.; Wolf, C.; Sobek, W.: Design and manufacturing of optimal structures made from functionally graded concrete, Proceedings of the International Association for Shell and Spatial Structures (IASS), Tagungsbeitrag, 2015.
  • Herrmann, M.; Sobek, W.: Gradientenbeton – Numerische Entwurfsmethoden und experimentelle Untersuchung gewichtsoptimierter Bauteile, Beton- und Stahlbetonbau, 110 (2015), 10, 672–686.
  • Sippel, T.S.; Reinhardt, H.-W.: Mischungsentwicklung für funktional gradierten Betonbau, In: Scheerer, S.; Curbach, M. (Hrsg.): Leicht Bauen mit Beton – Forschung im Schwerpunktprogramm 1542, Dresden: Eigenverlag TU Dresden, Förderphase 1, 2014.
  • Sobek, W.; Trumpf, H.; Heinlein, F.: Recyclinggerechtes Konstruieren im Stahlbau, Stahlbau, 79 (2010), 6, 424–433.
  • Wörner, M.; Sawodny, O.: Automatisierte Herstellung funktional gradierter Betonbauteile, In: Scheerer, S.; Curbach, M. (Hrsg.): Leicht Bauen mit Beton – Forschung im Schwerpunktprogramm 1542, Dresden: Eigenverlag TU Dresden, Förderphase 1, 2014.
  • Wörner, M. et al.: Automated Spraying of Functionally Graded Concrete Components - Analysis of the Process Parameters, Proceedings of the International Association for Shell and Spatial Structures (IASS), Tagungsbeitrag, 2015.